
Integrin-linked kinase (ILK) has been implicated as a molecular driver and mediator in both inflammation and tumorigenesis of the colon. However, a role for ILK in the tumor microenvironment (TME) and immune evasion has not been investigated. Here, we show a correlation of ILK expression with the immunosuppressive TME and cancer prognosis. We also uncover a role for ILK in the regulation of programmed death-ligand 1 (PD-L1) expression and immune cell cytotoxicity.
Dr Ian Nisbet Chief Operating Officer
Held in partnership with Harvard Stem Cell Institute, this virtual one-day investor and partner conference will explore stem cell therapeutics in the areas of regenerative medicine, oncology and emerging academic research. It will also showcase cutting-edge science, industry trends and the commercial potential of this innovative sector to an invited group of 65 life science investors.
Company participation in the conference is by invitation only. On Tuesday 12 April at 4:40 am AEST Ian will provide a non-confidential overview of Cartherics, its technology, lead product and pipeline, competitive position and more.
Cartherics Chief Development Officer, Dr Nicholas Boyd
The innate cell therapy field is exploding as novel research charges through the clinic, proving its potential as a safe, efficacious, and cost-effective treatment. From 30 March-1 April 2022 Pacific Daylight Time (PDT) industry experts will meet in San Diego, California to discuss the clinical and phase development of NK, Macrophage, γδT and NKT cell therapies for liquid and solid tumors.
On opening day Nicholas will make a presentation entitled “Optimizing Manufacturing Processes for iPSC-derived Cell Therapy Products”. On Friday PDT he will participate in a panel with representatives from Adicet Bio and Cellularity. They will discuss the complexity of identifying ‘optimal’ donors for off-the-shelf therapies.
Cartherics Chief Development Officer, Dr Nicholas Boyd
CAR-T immunotherapy has exploded over the last half a decade. It is now a billion-dollar market that is expanding rapidly with over 400+ new cell therapy trials in 2021 alone. But challenges still remain in solid tumours, toxicity management and manufacturing innovations. Stakeholders across oncology and beyond are now turning to next-generation developments and technology to create the therapies of tomorrow, NOW!
This week Stakeholders are meeting at the Next Generation CAR-TCR Summit in London, UK. On Friday 25 February at 2:45 am AEDT – in a presentation entitled Allogeneic Solid Tumor Immunotherapy using iPSC-Derived Gene-Edited iNK Cells, Nicholas will discuss why the design, manufacture, delivery and cost of Cartherics’ allogeneic ‘off-the-shelf’ approach is superior to patient-derived allogeneic cell therapies.
Chief Development Officer, Dr Nicholas Boyd
Cell therapies have the potential to not only be life-saving but curative for a host of diseases. However, inherent limitations in autologous based CAR-T therapy face major roadblocks for mass adoption and therapeutic effects in solid tumour indications.
On Friday 28 January at 7:30 am AEDT Nicholas will discuss the design, manufacture and translation of cell therapies in a presentation entitled Advancing Off-The-Shelf Immunotherapy for Solid Tumours: Using Gene-Edited iNK Cells.
Cellular immunotherapy is revolutionizing cancer treatment. And off-the-shelf, or allogeneic, treatments are beginning to replace technologies developed individually for each patient.
This is good news because the potential of allogeneic therapies is great. They promise to significantly save time and cut costs compared to individualised, or autologous, treatments.
In Cells special issue ‘Allogeneic Cell Cancer Immunotherapies” editor Alan Trounson introduces five papers from leading research teams, including two from Cartherics’ scientists. They all tackle the major scientific hurdle the new technologies face: possible rejection of treatments by patients’ immune systems.
Trounson is impressed by the solutions presented. “Early progress is encouraging, but the outcome of human clinical trials remains essential to evaluate the safety and efficacy of these new allogeneic cell therapy approaches,” he notes.
Chief Scientific Officer, Dr Richard Boyd
Deriving “off-the-shelf” cancer fighting immune effector cells from iPSC offers a remarkable opportunity for overcoming the limitations of current autologous CAR-T cell therapies. However as promising as the iPSC approach is, it also presents a series of different challenges.
On 7 December 2021 Richard discussed the challenges and potential solutions. Among the solutions is Cartherics’ platform for creating clinic-ready, gene-edited, CAR-iNK cells for application in solid tumour immunotherapy.
Cellular immunotherapy is revolutionizing cancer treatment. However, autologous transplants are complex, costly, and limited by the number and quality of T cells that can be isolated from and expanded for re-infusion into each patient.
This paper demonstrates a stromal support cell-free in vitro method for the differentiation of T cells from umbilical cord blood hematopoietic stem cells (HSCs).
From autologous cancer killers to off-the-shelf products targeting solid tumours like ovarian, prostate and breast cancer, Cartherics is developing them all.
The potential of such therapies is the reason Cartherics’ Chief Scientific Officer Richard Boyd was invited to speak at the international Multi-Functional Cell Therapies Summit in Boston, 4-6 May 2021.
In his presentation, Richard updated delegates on Cartherics’ recent advances.
Natural killer (NK) cells are potent innate immune system effector lymphocytes armed with multiple mechanisms for killing cancer cells. Given the dynamic roles of NK cells in tumor surveillance, they are fast becoming a next-generation tool for adoptive immunotherapy. Many strategies are being employed to increase their number and improve their ability to overcome cancer resistance and the immunosuppressive tumor microenvironment.
Chimeric antigen receptor (CAR) T cells have revolutionized blood cancer immunotherapy; however, their efficacy against solid tumors has been limited. A common mechanism of tumor escape from single target therapies is downregulation or mutational loss of the nominal epitope.
https://www.cell.com/molecular-therapy-family/oncolytics/fulltext/S2372-7705(21)00002-4

Off-the-shelf iPSC derived CAR-NK immunotherapy for solid tumors
Principal Scientist Dr Nicholas Boyd
The clinical impact of Chimeric Antigen Receptor T cell (CAR-T) technologies on hematological malignancies have revolutionized cancer treatment.
However, current autologous CAR-T therapies face major roadblocks for mass adoption.
Despite progress in developing cell therapies, such as T cell or stemcell therapies to treat diseases, immunoincompatibility remains a major barrier to clinical application.
Given the fact that a host’s immune system may reject allogeneic transplanted cells, methods have been developed to genetically modify patients’primary cells.
In October 2019 Cartherics attended the prestigious Cell & Gene Meeting on the Mesa https://www.meetingonthemesa.com/ in Carlsbad, California.
Cartherics Chief Scientific Officer, Richard Boyd, presented details to delegates of Cartherics’ pre-clinical in vitro and animal model research, cell manufacture for clinical trials, and corporate game plan.